MakeItFrom.com
Menu (ESC)

AISI 314 Stainless Steel vs. C87600 Bronze

AISI 314 stainless steel belongs to the iron alloys classification, while C87600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 314 stainless steel and the bottom bar is C87600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 45
18
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 590
470
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1380
970
Melting Onset (Solidus), °C 1340
860
Specific Heat Capacity, J/kg-K 490
410
Thermal Conductivity, W/m-K 15
28
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 25
29
Density, g/cm3 7.7
8.5
Embodied Carbon, kg CO2/kg material 4.3
2.7
Embodied Energy, MJ/kg 62
43
Embodied Water, L/kg 190
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
71
Resilience: Unit (Modulus of Resilience), kJ/m3 130
240
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21
16
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 3.9
8.1
Thermal Shock Resistance, points 14
17

Alloy Composition

Carbon (C), % 0 to 0.25
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0
88 to 92.5
Iron (Fe), % 46.7 to 56.5
0
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 1.5 to 3.0
3.5 to 5.5
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
4.0 to 7.0
Residuals, % 0
0 to 0.5