MakeItFrom.com
Menu (ESC)

AISI 316 Stainless Steel vs. 1080A Aluminum

AISI 316 stainless steel belongs to the iron alloys classification, while 1080A aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is 1080A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 360
18 to 40
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 8.0 to 55
2.3 to 34
Fatigue Strength, MPa 210 to 430
18 to 50
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 350 to 690
49 to 81
Tensile Strength: Ultimate (UTS), MPa 520 to 1180
74 to 140
Tensile Strength: Yield (Proof), MPa 230 to 850
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 590
170
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1380
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
230
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
62
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
200

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 3.9
8.3
Embodied Energy, MJ/kg 53
160
Embodied Water, L/kg 150
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 260
3.1 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1820
2.1 to 100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 18 to 41
7.6 to 15
Strength to Weight: Bending, points 18 to 31
14 to 22
Thermal Diffusivity, mm2/s 4.1
94
Thermal Shock Resistance, points 11 to 26
3.3 to 6.4

Alloy Composition

Aluminum (Al), % 0
99.8 to 100
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
0 to 0.030
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 62 to 72
0 to 0.15
Magnesium (Mg), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0 to 0.020
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.060

Comparable Variants