MakeItFrom.com
Menu (ESC)

AISI 316 Stainless Steel vs. 5383 Aluminum

AISI 316 stainless steel belongs to the iron alloys classification, while 5383 aluminum belongs to the aluminum alloys. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 360
85 to 110
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 8.0 to 55
6.7 to 15
Fatigue Strength, MPa 210 to 430
130 to 200
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 350 to 690
190 to 220
Tensile Strength: Ultimate (UTS), MPa 520 to 1180
310 to 370
Tensile Strength: Yield (Proof), MPa 230 to 850
150 to 310

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Corrosion, °C 410
65
Maximum Temperature: Mechanical, °C 590
200
Melting Completion (Liquidus), °C 1400
650
Melting Onset (Solidus), °C 1380
540
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
97

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 3.9
9.0
Embodied Energy, MJ/kg 53
160
Embodied Water, L/kg 150
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 260
23 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1820
170 to 690
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 18 to 41
32 to 38
Strength to Weight: Bending, points 18 to 31
38 to 42
Thermal Diffusivity, mm2/s 4.1
51
Thermal Shock Resistance, points 11 to 26
14 to 16

Alloy Composition

Aluminum (Al), % 0
92 to 95.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0 to 0.25
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 62 to 72
0 to 0.25
Magnesium (Mg), % 0
4.0 to 5.2
Manganese (Mn), % 0 to 2.0
0.7 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15

Comparable Variants