MakeItFrom.com
Menu (ESC)

AISI 316 Stainless Steel vs. AISI 403 Stainless Steel

Both AISI 316 stainless steel and AISI 403 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 35 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 360
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 8.0 to 55
16 to 25
Fatigue Strength, MPa 210 to 430
200 to 340
Poisson's Ratio 0.28
0.28
Reduction in Area, % 80
47 to 50
Rockwell B Hardness 80
83
Shear Modulus, GPa 78
76
Shear Strength, MPa 350 to 690
340 to 480
Tensile Strength: Ultimate (UTS), MPa 520 to 1180
530 to 780
Tensile Strength: Yield (Proof), MPa 230 to 850
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 410
390
Maximum Temperature: Mechanical, °C 590
740
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
28
Thermal Expansion, µm/m-K 16
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
6.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.9
Embodied Energy, MJ/kg 53
27
Embodied Water, L/kg 150
99

Common Calculations

PREN (Pitting Resistance) 26
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 260
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1820
210 to 840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18 to 41
19 to 28
Strength to Weight: Bending, points 18 to 31
19 to 24
Thermal Diffusivity, mm2/s 4.1
7.6
Thermal Shock Resistance, points 11 to 26
20 to 29

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 16 to 18
11.5 to 13
Iron (Fe), % 62 to 72
84.7 to 88.5
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0 to 0.6
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030

Comparable Variants