MakeItFrom.com
Menu (ESC)

AISI 316 Stainless Steel vs. C46400 Brass

AISI 316 stainless steel belongs to the iron alloys classification, while C46400 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is C46400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 8.0 to 55
17 to 40
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
40
Shear Strength, MPa 350 to 690
270 to 310
Tensile Strength: Ultimate (UTS), MPa 520 to 1180
400 to 500
Tensile Strength: Yield (Proof), MPa 230 to 850
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 590
120
Melting Completion (Liquidus), °C 1400
900
Melting Onset (Solidus), °C 1380
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
29

Otherwise Unclassified Properties

Base Metal Price, % relative 19
23
Calomel Potential, mV -50
-400
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 3.9
2.7
Embodied Energy, MJ/kg 53
47
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 260
76 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1820
120 to 500
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 18 to 41
14 to 17
Strength to Weight: Bending, points 18 to 31
15 to 17
Thermal Diffusivity, mm2/s 4.1
38
Thermal Shock Resistance, points 11 to 26
13 to 16

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 62 to 72
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
36.3 to 40.5
Residuals, % 0
0 to 0.4