MakeItFrom.com
Menu (ESC)

AISI 316 Stainless Steel vs. C67300 Bronze

AISI 316 stainless steel belongs to the iron alloys classification, while C67300 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is C67300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 8.0 to 55
12
Poisson's Ratio 0.28
0.31
Rockwell B Hardness 80
91
Shear Modulus, GPa 78
41
Shear Strength, MPa 350 to 690
300
Tensile Strength: Ultimate (UTS), MPa 520 to 1180
500
Tensile Strength: Yield (Proof), MPa 230 to 850
340

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 590
130
Melting Completion (Liquidus), °C 1400
870
Melting Onset (Solidus), °C 1380
830
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 15
95
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
25

Otherwise Unclassified Properties

Base Metal Price, % relative 19
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 3.9
2.7
Embodied Energy, MJ/kg 53
46
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 260
55
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1820
550
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 18 to 41
17
Strength to Weight: Bending, points 18 to 31
17
Thermal Diffusivity, mm2/s 4.1
30
Thermal Shock Resistance, points 11 to 26
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
58 to 63
Iron (Fe), % 62 to 72
0 to 0.5
Lead (Pb), % 0
0.4 to 3.0
Manganese (Mn), % 0 to 2.0
2.0 to 3.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0 to 0.25
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.5 to 1.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
27.2 to 39.1
Residuals, % 0
0 to 0.5