AISI 316 Stainless Steel vs. C70600 Copper-nickel
AISI 316 stainless steel belongs to the iron alloys classification, while C70600 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.
For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is C70600 copper-nickel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
120 |
Elongation at Break, % | 8.0 to 55 | |
3.0 to 34 |
Poisson's Ratio | 0.28 | |
0.34 |
Shear Modulus, GPa | 78 | |
46 |
Shear Strength, MPa | 350 to 690 | |
190 to 330 |
Tensile Strength: Ultimate (UTS), MPa | 520 to 1180 | |
290 to 570 |
Tensile Strength: Yield (Proof), MPa | 230 to 850 | |
63 to 270 |
Thermal Properties
Latent Heat of Fusion, J/g | 290 | |
220 |
Maximum Temperature: Mechanical, °C | 590 | |
220 |
Melting Completion (Liquidus), °C | 1400 | |
1150 |
Melting Onset (Solidus), °C | 1380 | |
1100 |
Specific Heat Capacity, J/kg-K | 470 | |
390 |
Thermal Conductivity, W/m-K | 15 | |
44 |
Thermal Expansion, µm/m-K | 16 | |
17 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.3 | |
9.8 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.6 | |
9.9 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 19 | |
33 |
Calomel Potential, mV | -50 | |
-280 |
Density, g/cm3 | 7.9 | |
8.9 |
Embodied Carbon, kg CO2/kg material | 3.9 | |
3.4 |
Embodied Energy, MJ/kg | 53 | |
51 |
Embodied Water, L/kg | 150 | |
300 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 85 to 260 | |
6.5 to 160 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 130 to 1820 | |
16 to 290 |
Stiffness to Weight: Axial, points | 14 | |
7.7 |
Stiffness to Weight: Bending, points | 25 | |
19 |
Strength to Weight: Axial, points | 18 to 41 | |
9.1 to 18 |
Strength to Weight: Bending, points | 18 to 31 | |
11 to 17 |
Thermal Diffusivity, mm2/s | 4.1 | |
13 |
Thermal Shock Resistance, points | 11 to 26 | |
9.8 to 19 |
Alloy Composition
Carbon (C), % | 0 to 0.080 | |
0 |
Chromium (Cr), % | 16 to 18 | |
0 |
Copper (Cu), % | 0 | |
84.7 to 90 |
Iron (Fe), % | 62 to 72 | |
1.0 to 1.8 |
Lead (Pb), % | 0 | |
0 to 0.050 |
Manganese (Mn), % | 0 to 2.0 | |
0 to 1.0 |
Molybdenum (Mo), % | 2.0 to 3.0 | |
0 |
Nickel (Ni), % | 10 to 14 | |
9.0 to 11 |
Nitrogen (N), % | 0 to 0.1 | |
0 |
Phosphorus (P), % | 0 to 0.045 | |
0 |
Silicon (Si), % | 0 to 0.75 | |
0 |
Sulfur (S), % | 0 to 0.030 | |
0 |
Zinc (Zn), % | 0 | |
0 to 1.0 |
Residuals, % | 0 | |
0 to 0.5 |