MakeItFrom.com
Menu (ESC)

AISI 316 Stainless Steel vs. C87800 Brass

AISI 316 stainless steel belongs to the iron alloys classification, while C87800 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 8.0 to 55
25
Poisson's Ratio 0.28
0.33
Rockwell B Hardness 80
86
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 520 to 1180
590
Tensile Strength: Yield (Proof), MPa 230 to 850
350

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 590
170
Melting Completion (Liquidus), °C 1400
920
Melting Onset (Solidus), °C 1380
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 15
28
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
27
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 3.9
2.7
Embodied Energy, MJ/kg 53
44
Embodied Water, L/kg 150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 260
130
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1820
540
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18 to 41
20
Strength to Weight: Bending, points 18 to 31
19
Thermal Diffusivity, mm2/s 4.1
8.3
Thermal Shock Resistance, points 11 to 26
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
80 to 84.2
Iron (Fe), % 62 to 72
0 to 0.15
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0 to 0.15
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0 to 0.2
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.010
Silicon (Si), % 0 to 0.75
3.8 to 4.2
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5