MakeItFrom.com
Menu (ESC)

AISI 316 Stainless Steel vs. C97800 Nickel Silver

AISI 316 stainless steel belongs to the iron alloys classification, while C97800 nickel silver belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is C97800 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
130
Elongation at Break, % 8.0 to 55
10
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
48
Tensile Strength: Ultimate (UTS), MPa 520 to 1180
370
Tensile Strength: Yield (Proof), MPa 230 to 850
170

Thermal Properties

Latent Heat of Fusion, J/g 290
220
Maximum Temperature: Mechanical, °C 590
230
Melting Completion (Liquidus), °C 1400
1180
Melting Onset (Solidus), °C 1380
1140
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 19
40
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 3.9
5.1
Embodied Energy, MJ/kg 53
76
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 260
31
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1820
120
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18 to 41
12
Strength to Weight: Bending, points 18 to 31
13
Thermal Diffusivity, mm2/s 4.1
7.3
Thermal Shock Resistance, points 11 to 26
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
64 to 67
Iron (Fe), % 62 to 72
0 to 1.5
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
24 to 27
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 0.75
0 to 0.15
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
4.0 to 5.5
Zinc (Zn), % 0
1.0 to 4.0
Residuals, % 0
0 to 0.4