MakeItFrom.com
Menu (ESC)

AISI 316 Stainless Steel vs. N08926 Stainless Steel

Both AISI 316 stainless steel and N08926 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is N08926 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 8.0 to 55
40
Fatigue Strength, MPa 210 to 430
290
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
80
Shear Strength, MPa 350 to 690
500
Tensile Strength: Ultimate (UTS), MPa 520 to 1180
740
Tensile Strength: Yield (Proof), MPa 230 to 850
330

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 410
420
Maximum Temperature: Mechanical, °C 590
1100
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 19
33
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 3.9
6.2
Embodied Energy, MJ/kg 53
84
Embodied Water, L/kg 150
200

Common Calculations

PREN (Pitting Resistance) 26
45
Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 260
240
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1820
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18 to 41
25
Strength to Weight: Bending, points 18 to 31
22
Thermal Diffusivity, mm2/s 4.1
3.2
Thermal Shock Resistance, points 11 to 26
16

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 16 to 18
19 to 21
Copper (Cu), % 0
0.5 to 1.5
Iron (Fe), % 62 to 72
41.7 to 50.4
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
6.0 to 7.0
Nickel (Ni), % 10 to 14
24 to 26
Nitrogen (N), % 0 to 0.1
0.15 to 0.25
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010