MakeItFrom.com
Menu (ESC)

AISI 316 Stainless Steel vs. S40945 Stainless Steel

Both AISI 316 stainless steel and S40945 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is S40945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 360
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 8.0 to 55
25
Fatigue Strength, MPa 210 to 430
160
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 80
69
Shear Modulus, GPa 78
75
Shear Strength, MPa 350 to 690
270
Tensile Strength: Ultimate (UTS), MPa 520 to 1180
430
Tensile Strength: Yield (Proof), MPa 230 to 850
230

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 410
450
Maximum Temperature: Mechanical, °C 590
710
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
8.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.2
Embodied Energy, MJ/kg 53
31
Embodied Water, L/kg 150
94

Common Calculations

PREN (Pitting Resistance) 26
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 260
89
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1820
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18 to 41
15
Strength to Weight: Bending, points 18 to 31
16
Thermal Diffusivity, mm2/s 4.1
6.9
Thermal Shock Resistance, points 11 to 26
15

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 16 to 18
10.5 to 11.7
Iron (Fe), % 62 to 72
85.1 to 89.3
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0 to 0.5
Niobium (Nb), % 0
0.18 to 0.4
Nitrogen (N), % 0 to 0.1
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.050 to 0.2