MakeItFrom.com
Menu (ESC)

AISI 316 Stainless Steel vs. S44537 Stainless Steel

Both AISI 316 stainless steel and S44537 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 360
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 8.0 to 55
21
Fatigue Strength, MPa 210 to 430
230
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 80
80
Shear Modulus, GPa 78
79
Shear Strength, MPa 350 to 690
320
Tensile Strength: Ultimate (UTS), MPa 520 to 1180
510
Tensile Strength: Yield (Proof), MPa 230 to 850
360

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 410
530
Maximum Temperature: Mechanical, °C 590
1000
Melting Completion (Liquidus), °C 1400
1480
Melting Onset (Solidus), °C 1380
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 19
19
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.9
3.4
Embodied Energy, MJ/kg 53
50
Embodied Water, L/kg 150
140

Common Calculations

PREN (Pitting Resistance) 26
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 260
95
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1820
320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18 to 41
18
Strength to Weight: Bending, points 18 to 31
18
Thermal Diffusivity, mm2/s 4.1
5.6
Thermal Shock Resistance, points 11 to 26
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 16 to 18
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 62 to 72
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 2.0
0 to 0.8
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0 to 0.1
0 to 0.040
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 0.75
0.1 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0