MakeItFrom.com
Menu (ESC)

AISI 316Cb Stainless Steel vs. 3102 Aluminum

AISI 316Cb stainless steel belongs to the iron alloys classification, while 3102 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 316Cb stainless steel and the bottom bar is 3102 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 34
23 to 28
Fatigue Strength, MPa 180
31 to 34
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 390
58 to 65
Tensile Strength: Ultimate (UTS), MPa 580
92 to 100
Tensile Strength: Yield (Proof), MPa 230
28 to 34

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 940
180
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
230
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
56
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
190

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.0
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.4
8.2
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 150
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 130
5.8 to 8.3
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 20
9.4 to 10
Strength to Weight: Bending, points 20
17 to 18
Thermal Diffusivity, mm2/s 4.1
92
Thermal Shock Resistance, points 13
4.1 to 4.4

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.95
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 60.9 to 72
0 to 0.7
Manganese (Mn), % 0 to 2.0
0.050 to 0.4
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0
Niobium (Nb), % 0 to 1.1
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15