MakeItFrom.com
Menu (ESC)

AISI 316Cb Stainless Steel vs. 713.0 Aluminum

AISI 316Cb stainless steel belongs to the iron alloys classification, while 713.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 316Cb stainless steel and the bottom bar is 713.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
74 to 75
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 34
3.9 to 4.3
Fatigue Strength, MPa 180
63 to 120
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
27
Shear Strength, MPa 390
180
Tensile Strength: Ultimate (UTS), MPa 580
240 to 260
Tensile Strength: Yield (Proof), MPa 230
170

Thermal Properties

Latent Heat of Fusion, J/g 290
370
Maximum Temperature: Mechanical, °C 940
180
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1410
610
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.9
3.1
Embodied Carbon, kg CO2/kg material 4.4
7.8
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 150
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
8.7 to 9.9
Resilience: Unit (Modulus of Resilience), kJ/m3 130
210 to 220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 20
22 to 23
Strength to Weight: Bending, points 20
28 to 29
Thermal Diffusivity, mm2/s 4.1
57
Thermal Shock Resistance, points 13
10 to 11

Alloy Composition

Aluminum (Al), % 0
87.6 to 92.4
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0 to 0.35
Copper (Cu), % 0
0.4 to 1.0
Iron (Fe), % 60.9 to 72
0 to 1.1
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 2.0
0 to 0.6
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0 to 0.15
Niobium (Nb), % 0 to 1.1
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.25