MakeItFrom.com
Menu (ESC)

AISI 316Cb Stainless Steel vs. C42600 Brass

AISI 316Cb stainless steel belongs to the iron alloys classification, while C42600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 316Cb stainless steel and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
1.1 to 40
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Shear Strength, MPa 390
280 to 470
Tensile Strength: Ultimate (UTS), MPa 580
410 to 830
Tensile Strength: Yield (Proof), MPa 230
220 to 810

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 940
180
Melting Completion (Liquidus), °C 1450
1030
Melting Onset (Solidus), °C 1410
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
26

Otherwise Unclassified Properties

Base Metal Price, % relative 22
31
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 4.4
2.9
Embodied Energy, MJ/kg 61
48
Embodied Water, L/kg 150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
9.4 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 130
230 to 2970
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20
13 to 27
Strength to Weight: Bending, points 20
14 to 23
Thermal Diffusivity, mm2/s 4.1
33
Thermal Shock Resistance, points 13
15 to 29

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 60.9 to 72
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0.050 to 0.2
Niobium (Nb), % 0 to 1.1
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0.020 to 0.050
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.5 to 4.0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0
0 to 0.2