MakeItFrom.com
Menu (ESC)

AISI 316Cb Stainless Steel vs. C87300 Bronze

AISI 316Cb stainless steel belongs to the iron alloys classification, while C87300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 316Cb stainless steel and the bottom bar is C87300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Tensile Strength: Ultimate (UTS), MPa 580
350
Tensile Strength: Yield (Proof), MPa 230
140

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Mechanical, °C 940
200
Melting Completion (Liquidus), °C 1450
970
Melting Onset (Solidus), °C 1410
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 15
28
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
6.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 22
29
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 4.4
2.7
Embodied Energy, MJ/kg 61
42
Embodied Water, L/kg 150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
62
Resilience: Unit (Modulus of Resilience), kJ/m3 130
86
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20
11
Strength to Weight: Bending, points 20
13
Thermal Diffusivity, mm2/s 4.1
8.0
Thermal Shock Resistance, points 13
13

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
94 to 95.7
Iron (Fe), % 60.9 to 72
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0.8 to 1.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0
Niobium (Nb), % 0 to 1.1
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
3.5 to 5.0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.5