MakeItFrom.com
Menu (ESC)

AISI 316Cb Stainless Steel vs. S30815 Stainless Steel

Both AISI 316Cb stainless steel and S30815 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 95% of their average alloy composition in common.

For each property being compared, the top bar is AISI 316Cb stainless steel and the bottom bar is S30815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
45
Fatigue Strength, MPa 180
320
Poisson's Ratio 0.28
0.28
Reduction in Area, % 46
56
Rockwell B Hardness 82
82
Shear Modulus, GPa 78
77
Shear Strength, MPa 390
480
Tensile Strength: Ultimate (UTS), MPa 580
680
Tensile Strength: Yield (Proof), MPa 230
350

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Corrosion, °C 490
430
Maximum Temperature: Mechanical, °C 940
1020
Melting Completion (Liquidus), °C 1450
1400
Melting Onset (Solidus), °C 1410
1360
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 22
17
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 4.4
3.3
Embodied Energy, MJ/kg 61
47
Embodied Water, L/kg 150
160

Common Calculations

PREN (Pitting Resistance) 26
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
260
Resilience: Unit (Modulus of Resilience), kJ/m3 130
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.1
4.0
Thermal Shock Resistance, points 13
15

Alloy Composition

Carbon (C), % 0 to 0.080
0.050 to 0.1
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 16 to 18
20 to 22
Iron (Fe), % 60.9 to 72
62.8 to 68.4
Manganese (Mn), % 0 to 2.0
0 to 0.8
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
10 to 12
Niobium (Nb), % 0 to 1.1
0
Nitrogen (N), % 0 to 0.1
0.14 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
1.4 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.030