MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. 1235 Aluminum

AISI 316L stainless steel belongs to the iron alloys classification, while 1235 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is 1235 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 9.0 to 50
28 to 34
Fatigue Strength, MPa 170 to 450
23 to 58
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 370 to 690
52 to 56
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
80 to 84
Tensile Strength: Yield (Proof), MPa 190 to 870
23 to 57

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 870
170
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1380
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
230
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
200

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 3.9
8.3
Embodied Energy, MJ/kg 53
160
Embodied Water, L/kg 150
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
17 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
3.8 to 24
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 19 to 41
8.2 to 8.6
Strength to Weight: Bending, points 18 to 31
15 to 16
Thermal Diffusivity, mm2/s 4.1
93
Thermal Shock Resistance, points 12 to 25
3.6 to 3.7

Alloy Composition

Aluminum (Al), % 0
99.35 to 100
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 62 to 72
0 to 0.65
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 0.050
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.65
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.1