MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. AISI 301LN Stainless Steel

Both AISI 316L stainless steel and AISI 301LN stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 350
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 9.0 to 50
23 to 51
Fatigue Strength, MPa 170 to 450
270 to 520
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Shear Strength, MPa 370 to 690
450 to 670
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
630 to 1060
Tensile Strength: Yield (Proof), MPa 190 to 870
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 410
410
Maximum Temperature: Mechanical, °C 870
890
Melting Completion (Liquidus), °C 1400
1430
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.7
Embodied Energy, MJ/kg 53
39
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 26
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
180 to 1520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19 to 41
22 to 38
Strength to Weight: Bending, points 18 to 31
21 to 30
Thermal Diffusivity, mm2/s 4.1
4.0
Thermal Shock Resistance, points 12 to 25
14 to 24

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 16 to 18
16 to 18
Iron (Fe), % 62 to 72
70.7 to 77.9
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
6.0 to 8.0
Nitrogen (N), % 0 to 0.1
0.070 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030

Comparable Variants