MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. AISI 444 Stainless Steel

Both AISI 316L stainless steel and AISI 444 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 350
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 9.0 to 50
23
Fatigue Strength, MPa 170 to 450
210
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 80
83
Shear Modulus, GPa 78
78
Shear Strength, MPa 370 to 690
300
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
470
Tensile Strength: Yield (Proof), MPa 190 to 870
310

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 410
580
Maximum Temperature: Mechanical, °C 870
930
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
23
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
15
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 3.9
3.4
Embodied Energy, MJ/kg 53
47
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 26
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
95
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19 to 41
17
Strength to Weight: Bending, points 18 to 31
17
Thermal Diffusivity, mm2/s 4.1
6.2
Thermal Shock Resistance, points 12 to 25
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 16 to 18
17.5 to 19.5
Iron (Fe), % 62 to 72
73.3 to 80.8
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
1.8 to 2.5
Nickel (Ni), % 10 to 14
0 to 1.0
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0 to 0.1
0 to 0.035
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8