MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. EN 1.4922 Stainless Steel

Both AISI 316L stainless steel and EN 1.4922 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is EN 1.4922 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.0 to 50
16
Fatigue Strength, MPa 170 to 450
330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 370 to 690
470
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
770
Tensile Strength: Yield (Proof), MPa 190 to 870
550

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 410
380
Maximum Temperature: Mechanical, °C 870
720
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
24
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
7.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.8
Embodied Energy, MJ/kg 53
40
Embodied Water, L/kg 150
100

Common Calculations

PREN (Pitting Resistance) 26
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
110
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
770
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19 to 41
27
Strength to Weight: Bending, points 18 to 31
24
Thermal Diffusivity, mm2/s 4.1
6.5
Thermal Shock Resistance, points 12 to 25
27

Alloy Composition

Carbon (C), % 0 to 0.030
0.17 to 0.23
Chromium (Cr), % 16 to 18
10 to 12.5
Iron (Fe), % 62 to 72
83.5 to 88.2
Manganese (Mn), % 0 to 2.0
0.3 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0.8 to 1.2
Nickel (Ni), % 10 to 14
0.3 to 0.8
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.75
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.015
Vanadium (V), % 0
0.2 to 0.35