MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. EN 1.4958 Stainless Steel

Both AISI 316L stainless steel and EN 1.4958 stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is EN 1.4958 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 9.0 to 50
40
Fatigue Strength, MPa 170 to 450
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Shear Strength, MPa 370 to 690
430
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
630
Tensile Strength: Yield (Proof), MPa 190 to 870
190

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 410
500
Maximum Temperature: Mechanical, °C 870
1090
Melting Completion (Liquidus), °C 1400
1400
Melting Onset (Solidus), °C 1380
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 19
30
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 3.9
5.3
Embodied Energy, MJ/kg 53
75
Embodied Water, L/kg 150
200

Common Calculations

PREN (Pitting Resistance) 26
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
190
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
95
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19 to 41
22
Strength to Weight: Bending, points 18 to 31
20
Thermal Diffusivity, mm2/s 4.1
3.2
Thermal Shock Resistance, points 12 to 25
15

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.5
Carbon (C), % 0 to 0.030
0.030 to 0.080
Chromium (Cr), % 16 to 18
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 62 to 72
41.1 to 50.6
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
30 to 32.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.1
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.015
Silicon (Si), % 0 to 0.75
0 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0.2 to 0.5