MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. EN 2.4952 Nickel

AISI 316L stainless steel belongs to the iron alloys classification, while EN 2.4952 nickel belongs to the nickel alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is EN 2.4952 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.0 to 50
17
Fatigue Strength, MPa 170 to 450
370
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
74
Shear Strength, MPa 370 to 690
700
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
1150
Tensile Strength: Yield (Proof), MPa 190 to 870
670

Thermal Properties

Latent Heat of Fusion, J/g 290
330
Maximum Temperature: Mechanical, °C 870
980
Melting Completion (Liquidus), °C 1400
1350
Melting Onset (Solidus), °C 1380
1300
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
55
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 3.9
9.8
Embodied Energy, MJ/kg 53
140
Embodied Water, L/kg 150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
170
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
1180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 19 to 41
38
Strength to Weight: Bending, points 18 to 31
29
Thermal Diffusivity, mm2/s 4.1
3.1
Thermal Shock Resistance, points 12 to 25
33

Alloy Composition

Aluminum (Al), % 0
1.0 to 1.8
Boron (B), % 0
0 to 0.0080
Carbon (C), % 0 to 0.030
0.040 to 0.1
Chromium (Cr), % 16 to 18
18 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 62 to 72
0 to 1.5
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
65 to 79.2
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
1.8 to 2.7