MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. EN AC-71100 Aluminum

AISI 316L stainless steel belongs to the iron alloys classification, while EN AC-71100 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is EN AC-71100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 350
110
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 9.0 to 50
1.1
Fatigue Strength, MPa 170 to 450
150
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
27
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
260
Tensile Strength: Yield (Proof), MPa 190 to 870
230

Thermal Properties

Latent Heat of Fusion, J/g 290
490
Maximum Temperature: Mechanical, °C 870
170
Melting Completion (Liquidus), °C 1400
580
Melting Onset (Solidus), °C 1380
520
Specific Heat Capacity, J/kg-K 470
860
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
97

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 3.9
7.4
Embodied Energy, MJ/kg 53
140
Embodied Water, L/kg 150
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
2.8
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 19 to 41
25
Strength to Weight: Bending, points 18 to 31
31
Thermal Shock Resistance, points 12 to 25
12

Alloy Composition

Aluminum (Al), % 0
78.7 to 83.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 62 to 72
0 to 0.3
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 2.0
0 to 0.15
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
7.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
9.0 to 10.5
Residuals, % 0
0 to 0.15