MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. SAE-AISI 8620 Steel

Both AISI 316L stainless steel and SAE-AISI 8620 steel are iron alloys. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is SAE-AISI 8620 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 350
150 to 210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.0 to 50
13 to 31
Fatigue Strength, MPa 170 to 450
270 to 360
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 370 to 690
340 to 420
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
520 to 690
Tensile Strength: Yield (Proof), MPa 190 to 870
360 to 570

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 870
410
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.6
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.5
Embodied Energy, MJ/kg 53
20
Embodied Water, L/kg 150
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
86 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
340 to 880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19 to 41
18 to 24
Strength to Weight: Bending, points 18 to 31
18 to 22
Thermal Diffusivity, mm2/s 4.1
10
Thermal Shock Resistance, points 12 to 25
15 to 20

Alloy Composition

Carbon (C), % 0 to 0.030
0.18 to 0.23
Chromium (Cr), % 16 to 18
0.4 to 0.6
Iron (Fe), % 62 to 72
96.9 to 98
Manganese (Mn), % 0 to 2.0
0.7 to 0.9
Molybdenum (Mo), % 2.0 to 3.0
0.15 to 0.25
Nickel (Ni), % 10 to 14
0.4 to 0.7
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 0.75
0.15 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.040

Comparable Variants