MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. C27200 Brass

AISI 316L stainless steel belongs to the iron alloys classification, while C27200 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is C27200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 9.0 to 50
10 to 50
Poisson's Ratio 0.28
0.31
Rockwell B Hardness 80
53 to 86
Shear Modulus, GPa 78
40
Shear Strength, MPa 370 to 690
230 to 320
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
370 to 590
Tensile Strength: Yield (Proof), MPa 190 to 870
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 870
130
Melting Completion (Liquidus), °C 1400
920
Melting Onset (Solidus), °C 1380
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
31

Otherwise Unclassified Properties

Base Metal Price, % relative 19
24
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 3.9
2.7
Embodied Energy, MJ/kg 53
45
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
30 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
110 to 810
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19 to 41
13 to 20
Strength to Weight: Bending, points 18 to 31
14 to 19
Thermal Diffusivity, mm2/s 4.1
37
Thermal Shock Resistance, points 12 to 25
12 to 20

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 62 to 72
0 to 0.070
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
34.6 to 38
Residuals, % 0
0 to 0.3