MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. C46200 Brass

AISI 316L stainless steel belongs to the iron alloys classification, while C46200 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is C46200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 9.0 to 50
17 to 34
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
40
Shear Strength, MPa 370 to 690
240 to 290
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
370 to 480
Tensile Strength: Yield (Proof), MPa 190 to 870
120 to 290

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 870
120
Melting Completion (Liquidus), °C 1400
840
Melting Onset (Solidus), °C 1380
800
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 16
20

Otherwise Unclassified Properties

Base Metal Price, % relative 19
24
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 3.9
2.7
Embodied Energy, MJ/kg 53
46
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
72 to 400
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19 to 41
13 to 16
Strength to Weight: Bending, points 18 to 31
14 to 17
Thermal Diffusivity, mm2/s 4.1
35
Thermal Shock Resistance, points 12 to 25
12 to 16

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 62 to 72
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
33.3 to 37.5
Residuals, % 0
0 to 0.4