MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. C85700 Brass

AISI 316L stainless steel belongs to the iron alloys classification, while C85700 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is C85700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 9.0 to 50
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
310
Tensile Strength: Yield (Proof), MPa 190 to 870
110

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 870
120
Melting Completion (Liquidus), °C 1400
940
Melting Onset (Solidus), °C 1380
910
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 15
84
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
25

Otherwise Unclassified Properties

Base Metal Price, % relative 19
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 3.9
2.8
Embodied Energy, MJ/kg 53
47
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
41
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
59
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 19 to 41
11
Strength to Weight: Bending, points 18 to 31
13
Thermal Diffusivity, mm2/s 4.1
27
Thermal Shock Resistance, points 12 to 25
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
58 to 64
Iron (Fe), % 62 to 72
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.050
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
32 to 40
Residuals, % 0
0 to 1.3