MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. C86200 Bronze

AISI 316L stainless steel belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 9.0 to 50
21
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
710
Tensile Strength: Yield (Proof), MPa 190 to 870
350

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 870
160
Melting Completion (Liquidus), °C 1400
940
Melting Onset (Solidus), °C 1380
900
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 15
35
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 19
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 3.9
2.9
Embodied Energy, MJ/kg 53
49
Embodied Water, L/kg 150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
120
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
540
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 19 to 41
25
Strength to Weight: Bending, points 18 to 31
22
Thermal Diffusivity, mm2/s 4.1
11
Thermal Shock Resistance, points 12 to 25
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 62 to 72
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
2.5 to 5.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0