MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. C89320 Bronze

AISI 316L stainless steel belongs to the iron alloys classification, while C89320 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is C89320 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 9.0 to 50
17
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
270
Tensile Strength: Yield (Proof), MPa 190 to 870
140

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 870
180
Melting Completion (Liquidus), °C 1400
1050
Melting Onset (Solidus), °C 1380
930
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 15
56
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
15

Otherwise Unclassified Properties

Base Metal Price, % relative 19
37
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 3.9
3.5
Embodied Energy, MJ/kg 53
56
Embodied Water, L/kg 150
490

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
38
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
93
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19 to 41
8.5
Strength to Weight: Bending, points 18 to 31
10
Thermal Diffusivity, mm2/s 4.1
17
Thermal Shock Resistance, points 12 to 25
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Bismuth (Bi), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
87 to 91
Iron (Fe), % 62 to 72
0 to 0.2
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.3
Silicon (Si), % 0 to 0.75
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5