MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. C99500 Copper

AISI 316L stainless steel belongs to the iron alloys classification, while C99500 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is C99500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 9.0 to 50
13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
45
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
540
Tensile Strength: Yield (Proof), MPa 190 to 870
310

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 870
210
Melting Completion (Liquidus), °C 1400
1090
Melting Onset (Solidus), °C 1380
1040
Specific Heat Capacity, J/kg-K 470
400
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
10

Otherwise Unclassified Properties

Base Metal Price, % relative 19
30
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 3.9
3.0
Embodied Energy, MJ/kg 53
47
Embodied Water, L/kg 150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
63
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
410
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19 to 41
17
Strength to Weight: Bending, points 18 to 31
17
Thermal Shock Resistance, points 12 to 25
19

Alloy Composition

Aluminum (Al), % 0
0.5 to 2.0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
82.5 to 92
Iron (Fe), % 62 to 72
3.0 to 5.0
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
3.5 to 5.5
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.5 to 2.0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0.5 to 2.0
Residuals, % 0
0 to 0.3