MakeItFrom.com
Menu (ESC)

AISI 316L Stainless Steel vs. S31260 Stainless Steel

Both AISI 316L stainless steel and S31260 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 316L stainless steel and the bottom bar is S31260 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 350
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 9.0 to 50
23
Fatigue Strength, MPa 170 to 450
370
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
80
Shear Strength, MPa 370 to 690
500
Tensile Strength: Ultimate (UTS), MPa 530 to 1160
790
Tensile Strength: Yield (Proof), MPa 190 to 870
540

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 410
450
Maximum Temperature: Mechanical, °C 870
1100
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
20
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
3.9
Embodied Energy, MJ/kg 53
53
Embodied Water, L/kg 150
180

Common Calculations

PREN (Pitting Resistance) 26
39
Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 230
160
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 1880
720
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19 to 41
28
Strength to Weight: Bending, points 18 to 31
24
Thermal Diffusivity, mm2/s 4.1
4.3
Thermal Shock Resistance, points 12 to 25
22

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 16 to 18
24 to 26
Copper (Cu), % 0
0.2 to 0.8
Iron (Fe), % 62 to 72
59.6 to 67.6
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
2.5 to 3.5
Nickel (Ni), % 10 to 14
5.5 to 7.5
Nitrogen (N), % 0 to 0.1
0.1 to 0.3
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Tungsten (W), % 0
0.1 to 0.5