MakeItFrom.com
Menu (ESC)

AISI 316N Stainless Steel vs. ASTM A356 Grade 8

Both AISI 316N stainless steel and ASTM A356 grade 8 are iron alloys. They have 70% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 316N stainless steel and the bottom bar is ASTM A356 grade 8.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 350
190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.0 to 39
21
Fatigue Strength, MPa 230 to 450
270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Tensile Strength: Ultimate (UTS), MPa 620 to 1160
630
Tensile Strength: Yield (Proof), MPa 270 to 870
390

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 940
440
Melting Completion (Liquidus), °C 1440
1470
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
38
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
3.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.0
Embodied Energy, MJ/kg 53
26
Embodied Water, L/kg 150
55

Common Calculations

PREN (Pitting Resistance) 27
4.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 230
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1880
390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22 to 41
22
Strength to Weight: Bending, points 20 to 31
21
Thermal Diffusivity, mm2/s 4.1
10
Thermal Shock Resistance, points 14 to 26
18

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.2
Chromium (Cr), % 16 to 18
1.0 to 1.5
Iron (Fe), % 61.9 to 71.9
95.4 to 97.4
Manganese (Mn), % 0 to 2.0
0.5 to 0.9
Molybdenum (Mo), % 2.0 to 3.0
0.9 to 1.2
Nickel (Ni), % 10 to 14
0
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 0.75
0.2 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0
0.050 to 0.15