MakeItFrom.com
Menu (ESC)

AISI 316N Stainless Steel vs. AWS E318

Both AISI 316N stainless steel and AWS E318 are iron alloys. They have a very high 97% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 316N stainless steel and the bottom bar is AWS E318.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 9.0 to 39
29
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
78
Tensile Strength: Ultimate (UTS), MPa 620 to 1160
620

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
23
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.9
4.4
Embodied Energy, MJ/kg 53
62
Embodied Water, L/kg 150
160

Common Calculations

PREN (Pitting Resistance) 27
27
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22 to 41
22
Strength to Weight: Bending, points 20 to 31
20
Thermal Diffusivity, mm2/s 4.1
4.0
Thermal Shock Resistance, points 14 to 26
16

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 16 to 18
17 to 20
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 61.9 to 71.9
57.6 to 69.5
Manganese (Mn), % 0 to 2.0
0.5 to 2.5
Molybdenum (Mo), % 2.0 to 3.0
2.0 to 3.0
Nickel (Ni), % 10 to 14
11 to 14
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030