MakeItFrom.com
Menu (ESC)

AISI 316N Stainless Steel vs. AWS ENiCrFe-3

AISI 316N stainless steel belongs to the iron alloys classification, while AWS ENiCrFe-3 belongs to the nickel alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AISI 316N stainless steel and the bottom bar is AWS ENiCrFe-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.0 to 39
34
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 78
74
Tensile Strength: Ultimate (UTS), MPa 620 to 1160
630

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Melting Completion (Liquidus), °C 1440
1370
Melting Onset (Solidus), °C 1400
1320
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 16
13

Otherwise Unclassified Properties

Base Metal Price, % relative 19
65
Density, g/cm3 7.9
8.4
Embodied Carbon, kg CO2/kg material 3.9
11
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 150
260

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 22 to 41
21
Strength to Weight: Bending, points 20 to 31
19
Thermal Shock Resistance, points 14 to 26
18

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 16 to 18
13 to 17
Cobalt (Co), % 0
0 to 0.12
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 61.9 to 71.9
0 to 10
Manganese (Mn), % 0 to 2.0
5.0 to 9.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
52 to 81
Niobium (Nb), % 0
1.0 to 2.5
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Tantalum (Ta), % 0
0 to 0.3
Titanium (Ti), % 0
0 to 1.0
Residuals, % 0
0 to 0.5