MakeItFrom.com
Menu (ESC)

AISI 316N Stainless Steel vs. EN 1.4567 Stainless Steel

Both AISI 316N stainless steel and EN 1.4567 stainless steel are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 316N stainless steel and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 350
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.0 to 39
22 to 51
Fatigue Strength, MPa 230 to 450
190 to 260
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 420 to 690
390 to 490
Tensile Strength: Ultimate (UTS), MPa 620 to 1160
550 to 780
Tensile Strength: Yield (Proof), MPa 270 to 870
200 to 390

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 410
420
Maximum Temperature: Mechanical, °C 940
930
Melting Completion (Liquidus), °C 1440
1410
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
11
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
16
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
3.1
Embodied Energy, MJ/kg 53
43
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 27
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 230
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1880
100 to 400
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22 to 41
19 to 27
Strength to Weight: Bending, points 20 to 31
19 to 24
Thermal Diffusivity, mm2/s 4.1
3.0
Thermal Shock Resistance, points 14 to 26
12 to 17

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.040
Chromium (Cr), % 16 to 18
17 to 19
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 61.9 to 71.9
63.3 to 71.5
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
8.5 to 10.5
Nitrogen (N), % 0.1 to 0.16
0 to 0.1
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015