MakeItFrom.com
Menu (ESC)

AISI 316N Stainless Steel vs. Grade 15 Titanium

AISI 316N stainless steel belongs to the iron alloys classification, while grade 15 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 316N stainless steel and the bottom bar is grade 15 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 9.0 to 39
20
Fatigue Strength, MPa 230 to 450
290
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
41
Shear Strength, MPa 420 to 690
340
Tensile Strength: Ultimate (UTS), MPa 620 to 1160
540
Tensile Strength: Yield (Proof), MPa 270 to 870
430

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 940
320
Melting Completion (Liquidus), °C 1440
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 16
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
37
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 3.9
32
Embodied Energy, MJ/kg 53
520
Embodied Water, L/kg 150
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 230
100
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1880
870
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 22 to 41
33
Strength to Weight: Bending, points 20 to 31
33
Thermal Diffusivity, mm2/s 4.1
8.4
Thermal Shock Resistance, points 14 to 26
41

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 16 to 18
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 61.9 to 71.9
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0.4 to 0.6
Nitrogen (N), % 0.1 to 0.16
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.045
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.2 to 99.56
Residuals, % 0
0 to 0.4