MakeItFrom.com
Menu (ESC)

AISI 316N Stainless Steel vs. Titanium 4-4-2

AISI 316N stainless steel belongs to the iron alloys classification, while titanium 4-4-2 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 316N stainless steel and the bottom bar is titanium 4-4-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 9.0 to 39
10
Fatigue Strength, MPa 230 to 450
590 to 620
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
42
Shear Strength, MPa 420 to 690
690 to 750
Tensile Strength: Ultimate (UTS), MPa 620 to 1160
1150 to 1250
Tensile Strength: Yield (Proof), MPa 270 to 870
1030 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 940
310
Melting Completion (Liquidus), °C 1440
1610
Melting Onset (Solidus), °C 1400
1560
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 15
6.7
Thermal Expansion, µm/m-K 16
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
39
Density, g/cm3 7.9
4.7
Embodied Carbon, kg CO2/kg material 3.9
30
Embodied Energy, MJ/kg 53
480
Embodied Water, L/kg 150
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 230
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1880
4700 to 5160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
34
Strength to Weight: Axial, points 22 to 41
68 to 74
Strength to Weight: Bending, points 20 to 31
52 to 55
Thermal Diffusivity, mm2/s 4.1
2.6
Thermal Shock Resistance, points 14 to 26
86 to 93

Alloy Composition

Aluminum (Al), % 0
3.0 to 5.0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 16 to 18
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 61.9 to 71.9
0 to 0.2
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 3.0
3.0 to 5.0
Nickel (Ni), % 10 to 14
0
Nitrogen (N), % 0.1 to 0.16
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.3 to 0.7
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
85.8 to 92.2
Residuals, % 0
0 to 0.4

Comparable Variants