AISI 316N Stainless Steel vs. C46400 Brass
AISI 316N stainless steel belongs to the iron alloys classification, while C46400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is AISI 316N stainless steel and the bottom bar is C46400 brass.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
100 |
Elongation at Break, % | 9.0 to 39 | |
17 to 40 |
Poisson's Ratio | 0.28 | |
0.31 |
Shear Modulus, GPa | 78 | |
40 |
Shear Strength, MPa | 420 to 690 | |
270 to 310 |
Tensile Strength: Ultimate (UTS), MPa | 620 to 1160 | |
400 to 500 |
Tensile Strength: Yield (Proof), MPa | 270 to 870 | |
160 to 320 |
Thermal Properties
Latent Heat of Fusion, J/g | 290 | |
170 |
Maximum Temperature: Mechanical, °C | 940 | |
120 |
Melting Completion (Liquidus), °C | 1440 | |
900 |
Melting Onset (Solidus), °C | 1400 | |
890 |
Specific Heat Capacity, J/kg-K | 470 | |
380 |
Thermal Conductivity, W/m-K | 15 | |
120 |
Thermal Expansion, µm/m-K | 16 | |
21 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.3 | |
26 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.7 | |
29 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 19 | |
23 |
Density, g/cm3 | 7.9 | |
8.0 |
Embodied Carbon, kg CO2/kg material | 3.9 | |
2.7 |
Embodied Energy, MJ/kg | 53 | |
47 |
Embodied Water, L/kg | 150 | |
330 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 95 to 230 | |
76 to 140 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 180 to 1880 | |
120 to 500 |
Stiffness to Weight: Axial, points | 14 | |
7.2 |
Stiffness to Weight: Bending, points | 25 | |
20 |
Strength to Weight: Axial, points | 22 to 41 | |
14 to 17 |
Strength to Weight: Bending, points | 20 to 31 | |
15 to 17 |
Thermal Diffusivity, mm2/s | 4.1 | |
38 |
Thermal Shock Resistance, points | 14 to 26 | |
13 to 16 |
Alloy Composition
Carbon (C), % | 0 to 0.080 | |
0 |
Chromium (Cr), % | 16 to 18 | |
0 |
Copper (Cu), % | 0 | |
59 to 62 |
Iron (Fe), % | 61.9 to 71.9 | |
0 to 0.1 |
Lead (Pb), % | 0 | |
0 to 0.2 |
Manganese (Mn), % | 0 to 2.0 | |
0 |
Molybdenum (Mo), % | 2.0 to 3.0 | |
0 |
Nickel (Ni), % | 10 to 14 | |
0 |
Nitrogen (N), % | 0.1 to 0.16 | |
0 |
Phosphorus (P), % | 0 to 0.045 | |
0 |
Silicon (Si), % | 0 to 0.75 | |
0 |
Sulfur (S), % | 0 to 0.030 | |
0 |
Tin (Sn), % | 0 | |
0.5 to 1.0 |
Zinc (Zn), % | 0 | |
36.3 to 40.5 |
Residuals, % | 0 | |
0 to 0.4 |