MakeItFrom.com
Menu (ESC)

AISI 316N Stainless Steel vs. S40910 Stainless Steel

Both AISI 316N stainless steel and S40910 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 316N stainless steel and the bottom bar is S40910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 350
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.0 to 39
23
Fatigue Strength, MPa 230 to 450
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
75
Shear Strength, MPa 420 to 690
270
Tensile Strength: Ultimate (UTS), MPa 620 to 1160
430
Tensile Strength: Yield (Proof), MPa 270 to 870
190

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 410
440
Maximum Temperature: Mechanical, °C 940
710
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
7.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.0
Embodied Energy, MJ/kg 53
28
Embodied Water, L/kg 150
94

Common Calculations

PREN (Pitting Resistance) 27
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 230
80
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1880
94
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22 to 41
16
Strength to Weight: Bending, points 20 to 31
16
Thermal Diffusivity, mm2/s 4.1
6.9
Thermal Shock Resistance, points 14 to 26
16

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 16 to 18
10.5 to 11.7
Iron (Fe), % 61.9 to 71.9
85 to 89.5
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0 to 0.5
Niobium (Nb), % 0
0 to 0.17
Nitrogen (N), % 0.1 to 0.16
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0 to 0.5