MakeItFrom.com
Menu (ESC)

AISI 316N Stainless Steel vs. S44635 Stainless Steel

Both AISI 316N stainless steel and S44635 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 316N stainless steel and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 350
240
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 9.0 to 39
23
Fatigue Strength, MPa 230 to 450
390
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
81
Shear Strength, MPa 420 to 690
450
Tensile Strength: Ultimate (UTS), MPa 620 to 1160
710
Tensile Strength: Yield (Proof), MPa 270 to 870
580

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 410
610
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
22
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
4.4
Embodied Energy, MJ/kg 53
62
Embodied Water, L/kg 150
170

Common Calculations

PREN (Pitting Resistance) 27
39
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 230
150
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1880
810
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22 to 41
25
Strength to Weight: Bending, points 20 to 31
23
Thermal Diffusivity, mm2/s 4.1
4.4
Thermal Shock Resistance, points 14 to 26
23

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.025
Chromium (Cr), % 16 to 18
24.5 to 26
Iron (Fe), % 61.9 to 71.9
61.5 to 68.5
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
3.5 to 4.5
Nickel (Ni), % 10 to 14
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0.1 to 0.16
0 to 0.035
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8