MakeItFrom.com
Menu (ESC)

AISI 316Ti Stainless Steel vs. AISI 309H Stainless Steel

Both AISI 316Ti stainless steel and AISI 309H stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 93% of their average alloy composition in common. There are 35 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 316Ti stainless steel and the bottom bar is AISI 309H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 41
40
Fatigue Strength, MPa 200
200
Poisson's Ratio 0.28
0.27
Reduction in Area, % 45
51
Rockwell B Hardness 84
82
Shear Modulus, GPa 82
78
Shear Strength, MPa 400
400
Tensile Strength: Ultimate (UTS), MPa 580
580
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 470
440
Maximum Temperature: Mechanical, °C 940
1080
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1380
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
19
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.0
3.6
Embodied Energy, MJ/kg 55
51
Embodied Water, L/kg 150
170

Common Calculations

PREN (Pitting Resistance) 26
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
190
Resilience: Unit (Modulus of Resilience), kJ/m3 140
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 13
13

Alloy Composition

Carbon (C), % 0 to 0.080
0.040 to 0.1
Chromium (Cr), % 16 to 18
22 to 24
Iron (Fe), % 61.3 to 72
58.1 to 66
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
12 to 15
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.7
0