MakeItFrom.com
Menu (ESC)

AISI 316Ti Stainless Steel vs. ASTM A182 Grade F24

Both AISI 316Ti stainless steel and ASTM A182 grade F24 are iron alloys. They have 71% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 316Ti stainless steel and the bottom bar is ASTM A182 grade F24.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 41
23
Fatigue Strength, MPa 200
330
Poisson's Ratio 0.28
0.29
Reduction in Area, % 45
45
Shear Modulus, GPa 82
74
Shear Strength, MPa 400
420
Tensile Strength: Ultimate (UTS), MPa 580
670
Tensile Strength: Yield (Proof), MPa 230
460

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 940
460
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1380
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 19
4.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.0
2.3
Embodied Energy, MJ/kg 55
33
Embodied Water, L/kg 150
61

Common Calculations

PREN (Pitting Resistance) 26
6.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
140
Resilience: Unit (Modulus of Resilience), kJ/m3 140
570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.0
11
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0015 to 0.0070
Carbon (C), % 0 to 0.080
0.050 to 0.1
Chromium (Cr), % 16 to 18
2.2 to 2.6
Iron (Fe), % 61.3 to 72
94.5 to 96.1
Manganese (Mn), % 0 to 2.0
0.3 to 0.7
Molybdenum (Mo), % 2.0 to 3.0
0.9 to 1.1
Nickel (Ni), % 10 to 14
0
Nitrogen (N), % 0 to 0.1
0 to 0.12
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.75
0.15 to 0.45
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0 to 0.7
0.060 to 0.1
Vanadium (V), % 0
0.2 to 0.3