MakeItFrom.com
Menu (ESC)

AISI 316Ti Stainless Steel vs. EN 1.4308 Stainless Steel

Both AISI 316Ti stainless steel and EN 1.4308 stainless steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 316Ti stainless steel and the bottom bar is EN 1.4308 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
150
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 41
34
Fatigue Strength, MPa 200
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 82
77
Tensile Strength: Ultimate (UTS), MPa 580
510
Tensile Strength: Yield (Proof), MPa 230
200

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 470
420
Maximum Temperature: Mechanical, °C 940
960
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
15
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.0
3.0
Embodied Energy, MJ/kg 55
43
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 26
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
140
Resilience: Unit (Modulus of Resilience), kJ/m3 140
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 4.0
4.1
Thermal Shock Resistance, points 13
11

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 16 to 18
18 to 20
Iron (Fe), % 61.3 to 72
65.9 to 74
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
8.0 to 11
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.7
0