MakeItFrom.com
Menu (ESC)

AISI 316Ti Stainless Steel vs. EN 1.4669 Stainless Steel

Both AISI 316Ti stainless steel and EN 1.4669 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 316Ti stainless steel and the bottom bar is EN 1.4669 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 41
28
Fatigue Strength, MPa 200
330
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 82
78
Shear Strength, MPa 400
500
Tensile Strength: Ultimate (UTS), MPa 580
780
Tensile Strength: Yield (Proof), MPa 230
450

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 470
440
Maximum Temperature: Mechanical, °C 940
1030
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1380
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
13
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 4.0
2.6
Embodied Energy, MJ/kg 55
38
Embodied Water, L/kg 150
160

Common Calculations

PREN (Pitting Resistance) 26
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
190
Resilience: Unit (Modulus of Resilience), kJ/m3 140
510
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
28
Strength to Weight: Bending, points 20
24
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 13
21

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.045
Chromium (Cr), % 16 to 18
21.5 to 24
Copper (Cu), % 0
1.6 to 3.0
Iron (Fe), % 61.3 to 72
65.2 to 74.8
Manganese (Mn), % 0 to 2.0
1.0 to 3.0
Molybdenum (Mo), % 2.0 to 3.0
0 to 0.5
Nickel (Ni), % 10 to 14
1.0 to 3.0
Nitrogen (N), % 0 to 0.1
0.12 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.7
0