MakeItFrom.com
Menu (ESC)

AISI 316Ti Stainless Steel vs. EN 1.4872 Stainless Steel

Both AISI 316Ti stainless steel and EN 1.4872 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 316Ti stainless steel and the bottom bar is EN 1.4872 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
270
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 41
28
Fatigue Strength, MPa 200
410
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 82
79
Shear Strength, MPa 400
620
Tensile Strength: Ultimate (UTS), MPa 580
950
Tensile Strength: Yield (Proof), MPa 230
560

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 470
440
Maximum Temperature: Mechanical, °C 940
1150
Melting Completion (Liquidus), °C 1450
1390
Melting Onset (Solidus), °C 1380
1340
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
17
Density, g/cm3 7.9
7.6
Embodied Carbon, kg CO2/kg material 4.0
3.3
Embodied Energy, MJ/kg 55
47
Embodied Water, L/kg 150
180

Common Calculations

PREN (Pitting Resistance) 26
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
230
Resilience: Unit (Modulus of Resilience), kJ/m3 140
780
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
26
Strength to Weight: Axial, points 20
35
Strength to Weight: Bending, points 20
28
Thermal Diffusivity, mm2/s 4.0
3.9
Thermal Shock Resistance, points 13
21

Alloy Composition

Carbon (C), % 0 to 0.080
0.2 to 0.3
Chromium (Cr), % 16 to 18
24 to 26
Iron (Fe), % 61.3 to 72
54.2 to 61.6
Manganese (Mn), % 0 to 2.0
8.0 to 10
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
6.0 to 8.0
Nitrogen (N), % 0 to 0.1
0.2 to 0.4
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0 to 0.7
0