MakeItFrom.com
Menu (ESC)

AISI 316Ti Stainless Steel vs. EN 1.4986 Stainless Steel

Both AISI 316Ti stainless steel and EN 1.4986 stainless steel are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 316Ti stainless steel and the bottom bar is EN 1.4986 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
230
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 41
18
Fatigue Strength, MPa 200
350
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 82
77
Shear Strength, MPa 400
460
Tensile Strength: Ultimate (UTS), MPa 580
750
Tensile Strength: Yield (Proof), MPa 230
560

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 470
520
Maximum Temperature: Mechanical, °C 940
940
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
25
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.0
4.8
Embodied Energy, MJ/kg 55
67
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 26
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
790
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
26
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 13
16

Alloy Composition

Boron (B), % 0
0.050 to 0.1
Carbon (C), % 0 to 0.080
0.040 to 0.1
Chromium (Cr), % 16 to 18
15.5 to 17.5
Iron (Fe), % 61.3 to 72
59.4 to 66.6
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 2.0 to 3.0
1.6 to 2.0
Nickel (Ni), % 10 to 14
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0.3 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.7
0