MakeItFrom.com
Menu (ESC)

AISI 316Ti Stainless Steel vs. EN 1.8918 Steel

Both AISI 316Ti stainless steel and EN 1.8918 steel are iron alloys. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 316Ti stainless steel and the bottom bar is EN 1.8918 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 41
19
Fatigue Strength, MPa 200
330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 82
73
Shear Strength, MPa 400
400
Tensile Strength: Ultimate (UTS), MPa 580
640
Tensile Strength: Yield (Proof), MPa 230
490

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 940
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
46
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.0
1.7
Embodied Energy, MJ/kg 55
24
Embodied Water, L/kg 150
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
23
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 4.0
12
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.050
Carbon (C), % 0 to 0.080
0 to 0.2
Chromium (Cr), % 16 to 18
0 to 0.3
Copper (Cu), % 0
0 to 0.7
Iron (Fe), % 61.3 to 72
95.2 to 98.9
Manganese (Mn), % 0 to 2.0
1.1 to 1.7
Molybdenum (Mo), % 2.0 to 3.0
0 to 0.1
Nickel (Ni), % 10 to 14
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.1
0 to 0.025
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.0050
Titanium (Ti), % 0 to 0.7
0 to 0.030
Vanadium (V), % 0
0 to 0.2