MakeItFrom.com
Menu (ESC)

AISI 316Ti Stainless Steel vs. EN AC-43200 Aluminum

AISI 316Ti stainless steel belongs to the iron alloys classification, while EN AC-43200 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 316Ti stainless steel and the bottom bar is EN AC-43200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
60 to 88
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 41
1.1
Fatigue Strength, MPa 200
67
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
27
Tensile Strength: Ultimate (UTS), MPa 580
190 to 260
Tensile Strength: Yield (Proof), MPa 230
97 to 220

Thermal Properties

Latent Heat of Fusion, J/g 290
540
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1450
600
Melting Onset (Solidus), °C 1380
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 4.0
7.8
Embodied Energy, MJ/kg 55
150
Embodied Water, L/kg 150
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
1.8 to 2.7
Resilience: Unit (Modulus of Resilience), kJ/m3 140
66 to 330
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 20
20 to 28
Strength to Weight: Bending, points 20
28 to 35
Thermal Diffusivity, mm2/s 4.0
59
Thermal Shock Resistance, points 13
8.8 to 12

Alloy Composition

Aluminum (Al), % 0
86.1 to 90.8
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 61.3 to 72
0 to 0.65
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 2.0
0 to 0.55
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0 to 0.15
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
9.0 to 11
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.7
0 to 0.2
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15