MakeItFrom.com
Menu (ESC)

AISI 316Ti Stainless Steel vs. SAE-AISI 1045 Steel

Both AISI 316Ti stainless steel and SAE-AISI 1045 steel are iron alloys. They have 67% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 316Ti stainless steel and the bottom bar is SAE-AISI 1045 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180 to 190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 41
13 to 18
Fatigue Strength, MPa 200
220 to 370
Poisson's Ratio 0.28
0.29
Reduction in Area, % 45
40 to 51
Shear Modulus, GPa 82
72
Shear Strength, MPa 400
380 to 410
Tensile Strength: Ultimate (UTS), MPa 580
620 to 680
Tensile Strength: Yield (Proof), MPa 230
330 to 580

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 940
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 19
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.0
1.4
Embodied Energy, MJ/kg 55
18
Embodied Water, L/kg 150
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
84 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 140
300 to 900
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
22 to 24
Strength to Weight: Bending, points 20
21 to 22
Thermal Diffusivity, mm2/s 4.0
14
Thermal Shock Resistance, points 13
20 to 22

Alloy Composition

Carbon (C), % 0 to 0.080
0.43 to 0.5
Chromium (Cr), % 16 to 18
0
Iron (Fe), % 61.3 to 72
98.5 to 99
Manganese (Mn), % 0 to 2.0
0.6 to 0.9
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0 to 0.050
Titanium (Ti), % 0 to 0.7
0